Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(3): 233, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38311668

RESUMEN

Remote sensing is one of the most important methods for analysing the multitemporal changes over a certain period. As a cost-effective way, remote sensing allows the long-term analysis of agricultural land by collecting satellite imagery from different satellite missions. Landsat is one of the longest-running world missions which offers a moderate-resolution earth observation dataset. Land surface mapping and monitoring are generally performed by incorporating classification and change detection models. In this work, a deep learning-based change detection (DCD) algorithm has been proposed to detect long-term agricultural changes using the Landsat series datasets (i.e., Landsat-7, Landsat-8, and Landsat-9) during the period 2012 to 2023. The proposed algorithm extracts the features from satellite data according to their spectral and geographic characteristics and identifies seasonal variability. The DCD integrates the deep learning-based (Environment for visualizing images) ENVI Net-5 classification model and posterior probability-based post-classification comparison-based change detection model (PCD). The DCD is capable of providing seasonal variations accurately with distinct Landsat series dataset and promises to use higher resolution dataset with accurate results. The experimental result concludes that vegetation has decreased from 2012 to 2023, while build-up land has increased up to 88.22% (2012-2023) for Landsat-7 and Landsat-8 datasets. On the other side, degraded area includes water (3.20-0.05%) and fallow land (1-0.59%). This study allows the identification of crop growth, crop yield prediction, precision farming, and crop mapping.


Asunto(s)
Aprendizaje Profundo , Monitoreo del Ambiente/métodos , Imágenes Satelitales , Agricultura , Estaciones del Año
2.
Sensors (Basel) ; 23(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37896481

RESUMEN

Glaciers and snow are critical components of the hydrological cycle in the Himalayan region, and they play a vital role in river runoff. Therefore, it is crucial to monitor the glaciers and snow cover on a spatiotemporal basis to better understand the changes in their dynamics and their impact on river runoff. A significant amount of data is necessary to comprehend the dynamics of snow. Yet, the absence of weather stations in inaccessible locations and high elevation present multiple challenges for researchers through field surveys. However, the advancements made in remote sensing have become an effective tool for studying snow. In this article, the snow cover area (SCA) was analysed over the Beas River basin, Western Himalayas for the period 2003 to 2018. Moreover, its sensitivity towards temperature and precipitation was also analysed. To perform the analysis, two datasets, i.e., MODIS-based MOYDGL06 products for SCA estimation and the European Centre for Medium-Range Weather Forecasts (ECMWF) Atmospheric Reanalysis of the Global Climate (ERA5) for climate data were utilized. Results showed an average SCA of ~56% of its total area, with the highest annual SCA recorded in 2014 at ~61.84%. Conversely, the lowest annual SCA occurred in 2016, reaching ~49.2%. Notably, fluctuations in SCA are highly influenced by temperature, as evidenced by the strong connection between annual and seasonal SCA and temperature. The present study findings can have significant applications in fields such as water resource management, climate studies, and disaster management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...